
UML China/Together 2006

掌握Open Source即掌握軟體發展趨勢

OpenMDA Spring

Herbinate

Early Phase Recent Evolution

Specific Domain Integration

Horizontal

V
er

tic
al

MFC

Frameworks

OWL

ZApp/Zinc

JSF

Tomcat

Struts

Aspect

掌握Open Source即掌握軟體發展趨勢

HibernateHibernateHibernateJDOJDOJDOJSFJSFJSFStructsStructsStructs

TomcatTomcatTomcat JDBCJDBCJDBC ………

SpringSpringSpring

(Abstraction and Integration)

How? Why? Quality?How? Why? Quality?How? Why? Quality?

Define

Deploy

Test

Design Develop

Programming Quality Of Service

MDA Coverage
Business Process Modeling
Model Transformation
Application modeling
Source code generation

ALM Coverage
MDA
Requirements Management
Application Profiling
Documentation
Source code audits
System Metrics

Source and model
Patterns management

Optimal reuse
Change management
Source code management

Define

Deploy

Test

Design Develop

Programming Quality Of Service

XP Coverage
Code-Centric
Embrace Change
Testing-Oriented

XP Coverage
Lightweight
Embedded with IDEs
Peer Coding/Reviews
Unit Testing

Programming Quality Of Service

collaboration

collaboration

collaboration

collaboration

Programming Quality Of Service

added

added

Organizational Maturity Levels

Initial

Defined

Managed

Quantitatively
Managed

Optimizing55

44

33

22

11 Process unpredictable, Process unpredictable,
poorly controlled, and poorly controlled, and
reactivereactive

Process characterized for projects Process characterized for projects
and is often reactiveand is often reactive

Focus on process improvementFocus on process improvement

Process measured and controlledProcess measured and controlled

Process characterized for the organization Process characterized for the organization
and is proactiveand is proactive

掌握Open Source即掌握軟體發展趨勢

Information
Technology

Software
Engineering

Process
Improvement

People
Improvement

下一階段
的開始

Methodology

S.O.P.
Optimization

Technology
Itself

All Of
Us

Programming Quality Of Service

Technologies, Programming Languages, Frameworks,
Methodologies, Processes,这些都是做什么的?

Productivity?
Performance?
Stability?
Scalability?

Quality

请试着回答下面的问题!

设计是否根据需求而来? 哪一个需求?
改变需求会影响什么?
某某系统这次上线的程序代码是哪些版本?上一次呢?
设计模型一定是正确的吗?

如何验证，测试设计模型?
不同设计模型如何相互转换?
开发出来的软件品质如何衡量呢?
现在的你/你的团队最有把握掌握品质的开发阶段是那
一个?

- This data from Boehm: Software Engineering Economics

RequirementsRequirements
AnalysisAnalysis
& Design& Design

Coding
Development

Testing
Acceptance

Testing

Product
Quality

Production

40-100x

30-70x

15-40x

10x

3-6x

1x

掌握Open Source即掌握軟體發展趨勢

Open Source的好處和陷阱

擷取Open Source的技術

使用高品質的軟件

Productivity/Reuse

Q
ua

lit
y/

K
no

w
le

dg
e

流行

Open Source

大家都在用

免費

Reuse
評估

好玩

Almost
Empty Here

Open Source的好處和陷阱

請試著回答下面的問題?
•A : 所有的Open Source都很好! Yes or No?

•B : 我很瞭解我使用的Open Source的架構!
Yes or No?

•C : Open Source的實作程式碼都沒問
題! Yes or No?
•Ｄ: 我的項目架構和Open Source的架
構不會雞同鴨講! Yes or No?

Open Source的好處和陷阱

擷取Open Source的技術

使用高品質的軟件

Productivity/Reuse

Q
ua

lit
y/

K
no

w
le

dg
e

流行

Open Source

大家都在用

免費

Reuse
評估

好玩

藉由Open Source
提昇軟件技術

藉由Open Source
學習軟件架構

但是您需要
正確的工具
幫助您

Modeling Is Everywhere

Modeling Database
Schema

Transformation(By 3rd-Normal Form)

Modeling Is Everywhere

int countLetters(List<List<String>> doc) {
int count = 0;
for (Iterator<List<String>>i = doc.iterator();

i.hasNext();) {
List<String>line = i.next();
for (Iterator<String>j = line.iterator();

j.hasNext();) {
String word = j.next();
count += word.length();

}
}
return count;

}

int countLetters(List<List<String>> doc) {
int cont = 0;
for (List<String>> line : doc) {
for (String word : line) {
count += word.length();

}
}

}

Modeling Your Code!

Transformation(By Refactoring)

Modeling Is Everywhere

Modeling Your Code!

Transformation(QVT)

Modeling Is Everywhere

public static void main(String[] args) {
try {

Launcher launcher = new
Launcher();

launcher.run(args);
} catch (LaunchException e) {

System.err.println(e.getMessage());
} catch (Throwable t) {

t.printStackTrace();
}

}

Ant Framework
２０５９４９行程式碼

Together
Reverse Engineering

Model

Models和語言

語言

系統
敘述

被撰寫

各種Models

企業Model

企業系統

軟體Model

企業部門 支援的軟體

描述

描述

繼承自

Sample Audits

Avoid Aggregation, Favor Composition
Avoid Dangling Model Elements
Always Indicate Multiplicity
Always Indicate Navigability
Avoid Multiplicities Involving Max and Mins
Avoid * Multiplicity
Always Name Associations
Avoid Using Dependencies
Do not Overlap Guards
Do not Use Disjoint Guards
Identifier Conflicts with Keyword
Indicate Role Name on Association Ends
Indicate Role Names on Recursive Associations
Lines Should Not Cross
Naming Conventions

Never Place Guard on Initial Transition
Provide Comment for OCL Constraints
Use Plural Names on Association Ends with Multiplicity > 1
Avoid Generalization Between Use Cases
Avoid Unassociated Actors
Avoid <<uses>>, <<includes>>, and <<extends>>
Avoid Weak Verbs at Beginning of Use Case
Avoid Association Classes
Abstract Class Declaration
Avoid Cyclic Dependencies Between Packages
Avoid N-ary Associations
Avoid Qualifiers
Always Specify Type on Attributes and Parameters
Class Should be Interface

Sample Audits

Conflict With System Class
Do not Model Elements of Implemented Interfaces
Do not Model Scaffolding Code
Do not Name Associations that have Association Classes
Hiding Inherited Attribute
Hiding Inherited Static Method
List Static Operations/Attributes Before Instance

Operations/Attributes
Overriding Non-abstract Method with Abstract Method
Subclasses have the Same Member
Use Singular Names for Classes
Avoid Modeling Destruction
Avoid Modeling Return Arrows
Avoid “Black Hole” States

Avoid “Miracle” States
Avoid Recursive Transitions With no Entry or Exit Actions
Avoid “Black Hole” Activites
Avoid “Miracle” Activities
All Transitions Existing a Decision Must Have Guards
Forks Should Have Only One Entry Transition
Joins Should Have Only One Exit Transition
Components Should only Depend on Interfaces

Class Diagram Audits

Avoid Association Classes (AAC)
Association Classes can be decomposed into a separate class that associates

two others. These may confuse generators, or be decomposed anyway.

A

Association classes and n-ary
associations should be avoided

Sequence Diagram Audits

Avoid Modeling Return Arrows (AMRA)
To reduce clutter on diagrams, the explicit modeling of return arrows is

discouraged.

A

Return arrows tend to clutter sequence diagrams

State Diagram Audits

Avoid “Black Hole” States (ABHS)
Only End states should have an incoming transition with no outgoing

transition.

A

Only end states should have no outgoing transition

什麼是 MDA (Model Driven Architecture)?

Model Driven Architecture

MDA provides an approach for, and enables tools to be provided for:
specifying a system independently of the platform that
supports it,
specifying platforms,
choosing a particular platform for the system, and
transforming the system specification into one for a particular
platform.

Three primary goals of MDA
Portability
interoperability
reusability

through architectural separation of concerns.

MDA is not a single specification, but a collection of
related OMG specifications:

Unified Modeling Language (UML™) 2.0
Infrastructure
Superstructure
Diagram Interchange
Profiles

Object Constraint Language (OCL)
Meta-Object Facility (MOF)
XML Meta-Data Interchange (XMI)
Common Warehouse Meta-model (CWM)
Query View Transformation (QVT)

What Comprises MDA?

MDA is not a Standard…yet

The MDA adopted Standards include:
UML, including OCL
MOF, including JMI and XMI
QVT, which doesn’t exist yet
And more: CWM, Diagram Interchange, and various
domain specific models which play a role

No OMG test for MDA compliance
This allows many to make loose claims

MDA Transformation

Examples
MOF and QVT based transformation, transforms based upon
PIM metamodel and PSM metamodel
XSLT based transformation, transforms XMI (or other XML
format) of PIM and transforms into source code
Apply PSM Patterns based on stereotypes defined in the PIM

Apply patterns interactively, using Borland’s Together products,
achieving many-many transformation

Transformation of diagram Example of transformation of a PIM class using

pattern based transformation

MDA Transformation

PSMPIM Code

Transformation
definition

Transformation
tool

Transformation
definition

Transformation
tool

MDA Transformation

UML

UML To Java
Transformation

Java

MDA Transformation

PIM

語言

PIM

語言

被撰寫 被撰寫

Transformation
definition

Transformation
tool

被使用

So, the focus is on

Quoted from ORMSC minutes

Ultimately we need Metadata to define the
language in which the model is expressed.

Languages adequate to express what is required.
These languages need not even be UML
They need not even be “modeling” languages

Example: OCL
The point is that the languages need to be well defined so that

transformations can be applied to models expressed in those languages.

MetaModeling

Model

Meta語言

被撰寫

MetaModel

語言

被撰寫

被定義

Models, 語言和Meta語言

Model 語言 Meta語言

被撰寫 被撰寫

MDA Framework

PIM

語言

PIM

語言

被撰寫

Transformation
definition

Transformation
tool

被使用

Meta語言

被撰寫

被撰寫
被撰寫

Programming Quality Of Service

PIM

語言

PIM

語言

被撰寫

Transformation
definition

Transformation
tool

被使用

Meta語言

被撰寫

被撰寫
被撰寫

Spring

Hibernate!

Loki

Q&A

