
© Quantum Leaps, LLC
www.state-machine.com

Miro Samek
miro@quantum-leaps.com

Practical UML Statecharts



© Quantum Leaps, LLC
www.state-machine.com slide 2 

About the instructor
Dr. Miro Samek is the author of 
"Practical UML Statecharts in C/C++, 
Second Edition: Event-Driven 
Programming for Embedded Systems" 
(Newnes 2008), has written numerous 
articles for magazines, including a column 
for C/C++ Users Journal, is a regular 
speaker at the Embedded Systems 
Conferences, and serves on the editorial 
review board of the Embedded Systems 
Design magazine. For a number of years, 
he worked in various Silicon Valley 
companies as an embedded software 
architect and before that he worked as an 
embedded software engineer at GE 
Medical Systems (now GE Healthcare). 

Contact: miro@quantum-leaps.com 



© Quantum Leaps, LLC
www.state-machine.com slide 3 

Outline

• Event-driven programming
• Hierarchical state machines
• Real-time frameworks

• Questions & Answers

Event-Driven Programming



© Quantum Leaps, LLC
www.state-machine.com slide 4 

Most computer systems are event-driven



© Quantum Leaps, LLC
www.state-machine.com slide 5 

Event-Driven System Example: Vending Machine



© Quantum Leaps, LLC
www.state-machine.com slide 6 

Traditional Sequential Program Flow

Function 1

. . .
/* wait for Button 1 press */
while (Button1_GPIO != DEPRESSED ) {
}
. . .

START

Function 3

. . .
/* wait for Button 2 press */
OSSemPend(&Button2_Semaphore , ...);
. . .

Function 2

Function 4

Program flow determined by sequence of instructions  



© Quantum Leaps, LLC
www.state-machine.com slide 7 

Event-Driven Program Flow
Program flow determined by order of events  

event dispatcher

. . .

event queue
(FIFO)

eventN_handler(); event2_handler(); event1_handler();

. . .

ISR1()

ISR2()

queue
empty

event dispatching
based on event type

application
code

event loop

event
idle_handler();



© Quantum Leaps, LLC
www.state-machine.com slide 8 

Event-driven program flow (cont'd)

• Events are first-class objects
• Events are processed asynchronously
• Events are processed in Run-to-Completion (RTC) fashion
• Events are queued

Event
signal : uint16_t

ADCEvent
data : uint16_t

EthEvent
payload[1024] : uint8_t
length : uint16_t



© Quantum Leaps, LLC
www.state-machine.com slide 9 

Challenges of event-driven programming

event A arrived

else

process A

else

event C arrived

else

process C

...

else

process B

event B arrived

(b) (c)

wait4eventA();

/* process A */

while (…) {

wait4eventB();

    /* process B */

}

wait4eventC();

/* process C */

(a)

process_A()

process_B()

process_C()

Where is the structure?
 Hidden in static variables
 “spaghetti” code inside

event handlers



© Quantum Leaps, LLC
www.state-machine.com slide 10 

Event-action paradigm—spaghetti code
Dim Op1, Op2                ' Previously input operand.
Dim DecimalFlag As Integer  ' Decimal point present yet?
Dim NumOps As Integer       ' Number of operands.
Dim LastInput               ' Indicate type of last keypress event.
Dim OpFlag                  ' Indicate pending operation.
Dim TempReadout
. . .
Private Sub Operator_Click(Index As Integer)
    TempReadout = Readout
    If LastInput = "NUMS" Then
        NumOps = NumOps + 1
    End If
    Select Case NumOps
        Case 0
        If Operator(Index).Caption = "-" And LastInput <> "NEG" Then
            Readout = "-" & Readout
            LastInput = "NEG"
        End If
        Case 1
        Op1 = Readout
        If Operator(Index).Caption ="-" And LastInput <> "NUMS“
           And OpFlag <> "=" Then
            Readout = "-"
            LastInput = "NEG"
        End If

Bunch of 
flags and 
variables

Complex 
conditional 
code based 
on the flags 
and variables



© Quantum Leaps, LLC
www.state-machine.com slide 11 

Outline

• Event-driven programming
• Hierarchical state machines
• Real-time frameworks

• Q & A

Hierarchical state machines



© Quantum Leaps, LLC
www.state-machine.com slide 12 

UML state machines (statecharts)

off ON / powerOn(); on

OFF / powerOff();

initial
transition

state
transition

triggering
event action(s)

state

State machine
• Event-action paradigm applied locally within each state 



© Quantum Leaps, LLC
www.state-machine.com slide 13 

Recovering the structure with a state machine

event A arrived

else

process A

else

event C arrived

else

process C

...

else

wait 4A

A / process A

process B

event B arrived

wait 4B

[…]

[else]

B / process B

wait 4C

C / process C

(b) (c)

wait4eventA();

/* process A */

while (…) {

    wait4eventB();

    /* process B */

}

wait4eventC();

/* process C */

(a)



© Quantum Leaps, LLC
www.state-machine.com slide 14 

Statecharts vs. Flowcharts
Completely distinct: different use of CPU!
• Statechart: on the arrows

 Otherwise CPU idle

s1

(a)

s2

s3

do X

do Y do Z

(b)

E1 / action1();

E2 / action2();

E3 / action3(); do W

• Flowchart: in the boxes
 CPU never idle



© Quantum Leaps, LLC
www.state-machine.com slide 15 

State-transition explosion

operand1

OPER

opEntered

operand2
DIGIT_0_9, POINT

EQUALS

result

DIGIT_0_9,
 POINT

OPER

C

C

C

C

OFF

OFF

OFF

OFF



© Quantum Leaps, LLC
www.state-machine.com slide 16 

Reuse of behavior through state nesting

on

operand1

OPER

opEntered

operand2

DIGIT_0_9, POINT
EQUALS

result
DIGIT_0_9, POINTOPER

C

OFF
• Programming by difference

 Behavioral inheritance



© Quantum Leaps, LLC
www.state-machine.com slide 17 

State entry and exit actions

TIMEOUT

TIMEOUT

exit / BSP_signalPeds(PEDS_DONT_WALK);
pedsEnabled

exit / BSP_signalCars(CARS_RED);
carsEnabled

• Guaranteed initialization and cleanup
• Superstates are entered before substates

 like class constructors in OOP 

• Superstates are exited after substates
 like class destructors in OOP



© Quantum Leaps, LLC
www.state-machine.com slide 18 

UML state machine semantics—QHsmTst example

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)

entry /
exit /
I [me->foo] / me->foo = 0;

s
/ me->foo = 0;

entry /
exit /
I /

s1

entry /
exit /
I [!me->foo] / me->foo = 1;

s2

entry /
exit /

s11
entry /
exit /

s21

entry /
exit /

s211
G

F

F

C

A

B

D

H

B

E

A

D [!me->foo ] / 
   me->foo = 1;

H

G

C

TERMINATE

D [me->foo] / 
   me->foo = 0;



© Quantum Leaps, LLC
www.state-machine.com slide 19 

Coding a HSM in QP/C++
QState Calc::on(Calc *me, QEvent const *e) {
    switch (e->sig) {
        case Q_ENTRY_SIG: {   // entry action
            BSP_message("on-ENTRY");
            return Q_HANDLED();
        }
        case Q_EXIT_SIG: {    // exit action
            BSP_message("on-EXIT");
            return Q_HANDLED();
        }
        case Q_INIT_SIG: {    // initial transition
            BSP_message("on-INIT");
            return Q_TRAN(&Calc::ready);
        }
        case C_SIG: {         // state transition
            BSP_clear();      // clear the display
            return Q_TRAN(&Calc::on);
        }
        case OFF_SIG: {       // state transition
            return Q_TRAN(&Calc::final);
        }
    }
    return Q_SUPER(&QHsm::top); // superstate
} 

top

entry /
exit /

on

. . .

. . .

ready
C

. . .

. . .

OFF



© Quantum Leaps, LLC
www.state-machine.com slide 20 

Outline

• Event-driven programming
• Hierarchical state machines
• Real-time frameworks

• Q & A

Real-time frameworks



© Quantum Leaps, LLC
www.state-machine.com slide 21 

Problems with the simple event-loop
• Single event queue prevents prioritization of work
• Event dispatcher is incompatible with state machines

event dispatcher

. . .

event queue
(FIFO)

eventN_handler(); event2_handler(); event1_handler();

. . .

ISR1()

ISR2()

queue
empty

event dispatching
based on event type

application
code

event loop

event
idle_handler();



© Quantum Leaps, LLC
www.state-machine.com slide 22 

Vertical vs. Horizontal Slicing

ON_SIG OFF_SIG

States

Events

“off”

“on”

{ powerOn(), “on”}

{ powerOff (), “off”}

ON_SIG OFF_SIG

States

Events

“off”

“on”

{ powerOn(), “on”}

{ powerOff (), “off”}

Event-handlers

State-handlers

Slicing by event-signal destroys the notion of state



© Quantum Leaps, LLC
www.state-machine.com slide 23 

State machine framework based on cooperative kernel

• Use multiple priority queues bound to state machines
• Don’t sort events based on the signal (vertical slicing)

cooperative scheduler

. . .

. . .FSM_dispatch(a, e);

e = Queue_get(a); . . .

find highest-priority 
non-empty queue

all queues empty 
(idle condition)

idle
processing

priority = 1priority = n-1priority = n priority = 0

FSM_dispatch(a, e);

e = Queue_get(a);

FSM_dispatch(a, e);

e = Queue_get(a);



© Quantum Leaps, LLC
www.state-machine.com slide 24 

State machine framework based on preemptive kernel
• RTC does not mean that state machines cannot preempt each other
• Each state machine executes in its own thread of control

 (State Machine + Event Queue + Thread) = Active Object  

ISR1 ISR2

. . .

events

event
queue

e = Queue_get(me);

FSM_dispatch(me, e);

active object’s
event loop

init();

(a) (b)

internal 
state
machine

active
object

blocking
operation



© Quantum Leaps, LLC
www.state-machine.com slide 25 

Minimal active object framework (QP)

Ship

QEP event processor

QF real -time framework

postIn()
postEvery()
disarm()
rearm()

ctr 

QTimeEvt

sig            : QSignal
dynamic_ : uint8_t

QEvent

init()
dispatch()

state : QHsmState

«abstract »
QHsm

start()
postFIFO()
postLIFO()

thread
eQueue
prio

«abstract »
QActive

“Star Wars” application

Missile Tunnel

Mine2
n ObjectImageEvtObjectPosEvt

Mine1
n

thread
Thread

eQueue
Queue

Configurable to derive 
from other classes with 
the compatible interface



© Quantum Leaps, LLC
www.state-machine.com slide 26 

Summary

State machines complement imperative languages
(C, C++, Java, C#, etc.)

State machines “explode” without state hierarchy

State machines are impractical without a framework

Once you try an event-driven, state machine framework you will
not want to go back to “spaghetti” and raw RTOS/OS

Welcome to the 21 century!



© Quantum Leaps, LLC
www.state-machine.com slide 27 

Outline

• Event-driven programming
• Hierarchical state machines
• Real-time frameworks

• Q & AQuestions & Answers


