
Software Reuse; Caught between strategic importance
and practical feasibility

by Gerrit Muller Embedded Systems Institute
e-mail: gerrit.muller@embeddedsystems.nl

www.gaudisite.nl

Abstract
Worldwide the belief is shared that software reuse is needed to cope with the
ever increasing amount of software. Software reuse is one part of addressing
the amount of software, which is often overhyped and underestimated. Reuse
of software is discussed via 8 statements, addressing: the need for reuse, the
technical and organizational challenges, integration issues, evolution, reuse of
know how, focus on the bussiness and customer and validation.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.

21st February 2008
status: concept
version: 1.0

features

performance

expectations

number of

products

release cycle time

years
 months

feature

interaction

complexity

amount of

software

new methods

new tools

new standards

integration

effort

hardware

performance

reuse

openness

interoperability

reliability

trends
 consequences
 solutions

new software

technology

Why reuse: many valid objectives

+ reduced time to market

+ reduced cost per function

+ improved quality

+ improved reliability

+ easier diversity management

+ employees only have to understand one base system

+ improved predictability

+ larger purchasing power

+ means to consolidate knowledge

+ increase added value

+ enables parallel developments of multiple products

+ free feature propagation

Software Reuse; Caught between strategic importance and practical feasibility
2 Gerrit Muller

version: 1.0
21st February 2008

SWRwhyReuse

Experiences with reuse, from counterproductive to effective

good

reduced time to market

reduced investment

reduced (shared) maintenance cost

improved quality

improved reliability

easier diversity management

understanding of one base system

improved predictability

larger purchasing power

means to consolidate knowledge

increase added value

enables parallel developments

free feature propagation

bad

longer time to market

high investments

lots of maintenance

poor quality

poor reliability

diversity is opposed

lot of know how required

predictable too late

dependability

knowledge dilution

lack of market focus

interference

but integration required

Software Reuse; Caught between strategic importance and practical feasibility
3 Gerrit Muller

version: 1.0
21st February 2008

SWRexperiences

Succesful examples of reuse

homogeneous domain

hardware dominated

limited scope

cath lab

MRI

television

waferstepper

car

airplane

shaver

television

audio codec

compression library

streaming library

Software Reuse; Caught between strategic importance and practical feasibility
4 Gerrit Muller

version: 1.0
21st February 2008

SWRsuccessful

Limits of successful reuse

poor/slow response on paradigm shifts

TV: LCD screens

cath lab: image based acquisition control

struggle with integration/convergence with other domains

TV: digital networks and media

cath lab: US imaging, MRI

software maintenance, configurations, integration, release

MRI: integration and test

wafersteppers: number of configurations

how to innovate?

Software Reuse; Caught between strategic importance and practical feasibility
5 Gerrit Muller

version: 1.0
21st February 2008

SWRlimits

Reuse statements

customer diversity

market dynamics
 product diversity
 reuse shared

proven functionality

1 Reuse
of
software modules
 is
needed

2
The
technical

and

reuse

sharing

conflicting

interests

overdesign or

under performance

complicated

supplier customer

relationships

3
organizational
 challenge

 are
underestimated

integrating concepts: performance, resource management, exception handling, etcetera

4 Components
 are the
easy
part,
integration
 is
difficult

Software Reuse; Caught between strategic importance and practical feasibility
6 Gerrit Muller

version: 1.0
21st February 2008

SWRstatements

Reuse statements continued

5 Reuse
of
know how

or

people
instead of

implementation
 i
s more
effective

6
The
p
latform
must
evolve
continuously

7 Focus
on
business bottomline
 and
customer

not on
 reuse

8. Use
before
reuse

dynamic
market

changing
applications

served

by

up to date

products

based

on

evolving

platform

rapid changing

technology

(Moore!)

using

specification

design

implementation

validation

verification

people

know how

Software Reuse; Caught between strategic importance and practical feasibility
7 Gerrit Muller

version: 1.0
21st February 2008

SWRstatementsContinued

1. Reuse is needed

Software Reuse; Caught between strategic importance and practical feasibility
8 Gerrit Muller

version: 1.0
21st February 2008

Reuse is needed ... as part of the solution

features

performance

expectations

number of

products

release cycle time

years
 months

feature

interaction

complexity

amount of

software

new methods

new tools

new standards

integration

effort

hardware

performance

reuse

openness

interoperability

reliability

trends
 consequences
 solutions

new software

technology

Software Reuse; Caught between strategic importance and practical feasibility
9 Gerrit Muller

version: 1.0
21st February 2008
SWRreuseNeeded

2. Technical challenge

Software Reuse; Caught between strategic importance and practical feasibility
10 Gerrit Muller

version: 1.0
21st February 2008

The danger of being generic: bloating

after refactoring

specific

implementations

without a priori re-use

generic design from

scratch

lots of if-then-else

lots of configuration

options

lots of stubs

lots of best guess

defaults

over-generic class

lots of

config

over-

rides

lots of

config

over-

rides

lots of

config

over-

rides

toolbox

side

client

side

in retrospect common

(duplicated) code

"Real-life" example: redesigned
 Tool
super-class and descendants, ca 1994

Software Reuse; Caught between strategic importance and practical feasibility
11 Gerrit Muller

version: 1.0
21st February 2008

GDbloatingVisualized

Exploring bloating

overhead

value

legenda

core

function

po
or

 d
es

ig
n

("
ho

w
")

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

genericity

configurability

provisions for

future

support for

unused legacy

code

Software Reuse; Caught between strategic importance and practical feasibility
12 Gerrit Muller

version: 1.0
21st February 2008

EASRTbloating

Bloating causes more bloating

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

po
or

 d
es

ig
n

("
ho

w
")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

po
or

 d
es

ig
n

("
ho

w
")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

po
or

 d
es

ig
n

("
ho

w
")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

po
or

 d
es

ig
n

("
ho

w
")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

decomposition overhead

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity
configurability provisions for

Software Reuse; Caught between strategic importance and practical feasibility
13 Gerrit Muller

version: 1.0
21st February 2008

EASRTbloatingCausesBloating

causes even more bloating...

overhead

value

legenda

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

po
or

 d
es

ig
n

("
ho

w
")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

po
or

 d
es

ig
n

("
ho

w
")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

po
or

 d
es

ig
n

("
ho

w
")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

core

functionality

genericity

configurability

provisions for

future

support for

unused legacy

code

po
or

 d
es

ig
n

("
ho

w
")

do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e
fin

e
gr

ai
n

C
O

M
 in

te
rfa

ce
s

po
or

 s
pe

ci
fic

at
io

n
("

w
ha

t")

decomposition overhead

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity
configurability provisions for

performance, resource

optimization

poor

design

poor

spec

dogmatic

rules

support for unused legacy code

genericity
configurability provisions for

Bloating causes performance

and resource problems.

Solution: special measures:

memory pools, shortcuts, ...

Software Reuse; Caught between strategic importance and practical feasibility
14 Gerrit Muller

version: 1.0
21st February 2008

EASRTbloatingCausesBloatingMore

3. Organizational challenge

Software Reuse; Caught between strategic importance and practical feasibility
15 Gerrit Muller

version: 1.0
21st February 2008

Conventional operational organization

portfolio

operational

manager

family

operational

manager

project

leader

(single product)

project

leader

(subsystem)

 developers

portfolio

architect

family

architect

product

architect

subsystem

architect

marketing

manager

family

marketing

manager

product

manager

entire

portfolio

product

family

single

product

subsystem

module

operational
 technical
 commercial

Software Reuse; Caught between strategic importance and practical feasibility
16 Gerrit Muller

version: 1.0
21st February 2008

PCPoperationalOrganization

Modified operational organization

portfolio

operational

manager

family

operational

manager

project

leader

(single product)

project

leader

(subsystem)

subsystem

developers

entire

portfolio

product

family

single

product

sub-

system

module

operational

project

leader

platform

project

leader

(component)

component

developers

marketing

manager

family

marketing

manager

product

manager

commercial

portfolio

architect

family

architect

product

architect

subsystem

architect

technical

platform

architect

component

architect

platform

manager

component

manager

platform

component

Software Reuse; Caught between strategic importance and practical feasibility
17 Gerrit Muller

version: 1.0
21st February 2008

GDoperationalOrganization

Reuse causes coupling

product

creation

family

creation

product

creation

platform

creation

policies

priorities

deliverables

budgets

constraints

deliverables

customer

customer

conflicting

interests

Software Reuse; Caught between strategic importance and practical feasibility
18 Gerrit Muller

version: 1.0
21st February 2008

SWRorganizationalCoupling

4. Integration

Software Reuse; Caught between strategic importance and practical feasibility
19 Gerrit Muller

version: 1.0
21st February 2008

Decomposition is easy, integration is difficult

Decomposition

is "easy"

Integration is

difficult

Software Reuse; Caught between strategic importance and practical feasibility
20 Gerrit Muller

version: 1.0
21st February 2008

LWAdecompositionAndIntegration

Nasty surprises show up during integration

component 1

component 4

component 3

component 2

integration and test

scheduled

closing date

delay

Do you have any design

issues for the design meeting?

The default answer is: No.

realized

closing date

During integration numerous

problems become visible

Software Reuse; Caught between strategic importance and practical feasibility
21 Gerrit Muller

version: 1.0
21st February 2008

MSintegration

Architectural mismatch

tuner
 tuner
MPEG
 MPEG

Duplication

Architectural mismatch
 :

wrappers, translators, conflicting controls

Poor performance;

additional resource usage

additional
 code

and complexity,

no
 added
 value

UI
 UI

non problem
Problems
 Architecture
 Reuse

Software Reuse; Caught between strategic importance and practical feasibility
22 Gerrit Muller

version: 1.0
21st February 2008
ARmergeProblems

Integrating concepts

resource

usage

perfor-

mance

exception

handling

device

abstraction

pipeline

start up

shut down

persistence

IQ

tuner
 frame-

buffer
 MPEG
 DSP
 CPU
 RAM

drivers
 scheduler
 OS

etc

audio
 video
 TXT

file-

system
networking
etc.

view
 play
 browse

storage

acquisition
 compress
 encoding

display
 de-

compress

decoding

2.
 construction

decomposition

3.
 allocation

1.
 functional

decomposition

4.
 infrastructure

5.
 choice of

integrating

concepts

safety

security

Software Reuse; Caught between strategic importance and practical feasibility
23 Gerrit Muller

version: 1.0
21st February 2008

SWRintegratingConcepts

Platform block diagram

Architecture

guidelines

Base Product

Hardware Abstraction
 Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Hardware

Software Reuse; Caught between strategic importance and practical feasibility
24 Gerrit Muller

version: 1.0
21st February 2008
SWRblockDiagram

Platform types

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Architecture

guidelines

Base Product

Infrastructure

services

Application

Toolboxes

Application

Services

Test environment

Development

support

services

Product 1

specifics

Product 2

specifics

Product n

specifics

Hardware Abstraction

Hardware

Hardware Abstraction

Hardware

Hardware Abstraction

Hardware

integration level

system

component

pr
ep

ar
at

io
n

le
ve

l

subsystem

"platform"

module

sy
st

em

co
m

po
ne

nt

su
bs

ys
te

m

"p
la

tfo
rm

"

m
od

ul
e

"Delegated" integration

Shared integration

A

B

C

A
 B

C

Software Reuse; Caught between strategic importance and practical feasibility
25 Gerrit Muller

version: 1.0
21st February 2008
SWRplatformTypes

5. Reuse of know how and people

Software Reuse; Caught between strategic importance and practical feasibility
26 Gerrit Muller

version: 1.0
21st February 2008

Reuse in CAFCR perspective

Customer

What

Customer

How

Product

What

Product

How

What
does Customer need

 in Product and
 Why
?

C
ustomer

objectives

A
pplication
 F
unctional
 C
onceptual
 R
ealization

rate of

change

Understanding
 spec
 design
 implemen-

tation

"easy" reuse
 costly

reuse

Software Reuse; Caught between strategic importance and practical feasibility
27 Gerrit Muller

version: 1.0
21st February 2008

SWRrateOfChangeCAFCR

6. Evolution

Software Reuse; Caught between strategic importance and practical feasibility
28 Gerrit Muller

version: 1.0
21st February 2008

The platform in a dynamic world

Architecture

Platform

Dynamic
Market

Fast changing
 Technology

How
stable

is a platform

or an architecture?

Components

Software Reuse; Caught between strategic importance and practical feasibility
29 Gerrit Muller

version: 1.0
21st February 2008

LWAplatformStability

Platform evolution (Easyvision 1991-1996)

1991

1992

1994

1991

1994

Last changed in:

Growth

Change

3
rd
 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete

1992

1996

Software Reuse; Caught between strategic importance and practical feasibility
30 Gerrit Muller

version: 1.0
21st February 2008

LWAplatformEvolution

7. Focus on business bottomline and customer

Software Reuse; Caught between strategic importance and practical feasibility
31 Gerrit Muller

version: 1.0
21st February 2008

Simplified process view

policy and

planning

customer

Philips business

va
lu

e

PCP

customer oriented process

(sales, service, production)

people and technology management process

Software Reuse; Caught between strategic importance and practical feasibility
32 Gerrit Muller

version: 1.0
21st February 2008

ISADprocessDecomposition

Modified Process Decomposition

policy and

planning

customer

Philips business

va
lue

PCP

customer oriented process

(sales, service, production)

people and technology management process

create generic components

Software Reuse; Caught between strategic importance and practical feasibility
33 Gerrit Muller

version: 1.0
21st February 2008

SWRprocessDecompositionFamily

Financial Viewpoint on Process Decomposition

policy and

planning

customer

Philips business

va
lue

PCP

customer oriented process

(sales, service, production)

people and technology management process

create generic components

management

tomorrow's cashflow

strategic asset

generation

assets

cashflow generation

Software Reuse; Caught between strategic importance and practical feasibility
34 Gerrit Muller

version: 1.0
21st February 2008

SWRprocessDecompositionFamilyByValue

Feedback flow: loss of customer understanding!

policy and

planning

Philips business

va
lue

people and technology management process

create generic components

PCP

fe
ed

-

ba

ck

customer

customer oriented process

(sales, service, production)

Software Reuse; Caught between strategic importance and practical feasibility
35 Gerrit Muller

version: 1.0
21st February 2008

SWRprocessDecompositionFamilyPlusFlow

Models for reuse

lead customer

carrier product

platform

technology push

good

direct feedback

too specific?

generic?

no feedback

bad

advanced

demanding

innovate for specific customer

refactor to extract generics

innovate for specific product

refactor to extract generics

innovate in generic platform

integrate in products

innovate in research laboratory

transfer to product development

Software Reuse; Caught between strategic importance and practical feasibility
36 Gerrit Muller

version: 1.0
21st February 2008

SWRreuseModels

8. Use before reuse

Software Reuse; Caught between strategic importance and practical feasibility
37 Gerrit Muller

version: 1.0
21st February 2008

Feedback

3 months

25 months

Start

Target

stepsize:

elapsed time:

Software Reuse; Caught between strategic importance and practical feasibility
38 Gerrit Muller

version: 1.0
21st February 2008
LWAfeedbackLarge

Feedback (2)

3 months

25 months

2 months

12 months

Start
 Start

Target
 Target

stepsize:

elapsed time

Software Reuse; Caught between strategic importance and practical feasibility
39 Gerrit Muller

version: 1.0
21st February 2008

LWAfeedbackMedium

Feedback (3)

3 months

25 months

2 months

12 months

1 month

8 months

Start
 Start
 Start

Target
 Target
 Target

stepsize:

elapsed time

Small feedback cycles result in Faster Time to Market

Software Reuse; Caught between strategic importance and practical feasibility
40 Gerrit Muller

version: 1.0
21st February 2008
LWAfeedbackSmall

Use = Validate before Reuse

Does it satisfy the needs?

Does it fit in the constraints?

Does it fit in the design?

Is the quality sufficient?
 multiplication of problems

or multiplication of benefits

architectural match

no bloating

cost price

effort

performance

functionality

user interface

Software Reuse; Caught between strategic importance and practical feasibility
41 Gerrit Muller

version: 1.0
21st February 2008

SWRuseBeforeReuse

