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Abstract
Worldwide the belief is shared that software reuse is needed to cope with the
ever increasing amount of software. Software reuse is one part of addressing
the amount of software, which is often overhyped and underestimated. Reuse
of software is discussed via 8 statements, addressing: the need for reuse, the
technical and organizational challenges, integration issues, evolution, reuse of
know how, focus on the bussiness and customer and validation.

Distribution

This article or presentation is written as part of the Gaudí project. The Gaudí project
philosophy is to improve by obtaining frequent feedback. Frequent feedback is pursued by an
open creation process. This document is published as intermediate or nearly mature version
to get feedback. Further distribution is allowed as long as the document remains complete
and unchanged.
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Why reuse: many valid objectives

+ reduced time to market

+ reduced cost per function

+ improved quality

+ improved reliability

+ easier diversity management

+ employees only have to understand one base system

+ improved predictability

+ larger purchasing power

+ means to consolidate knowledge

+ increase added value

+ enables parallel developments of multiple products

+ free feature propagation
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Experiences with reuse, from counterproductive to effective

good

reduced time to market

reduced investment

reduced (shared) maintenance cost

improved quality

improved reliability

easier diversity management

understanding of one base system

improved predictability

larger purchasing power

means to consolidate knowledge

increase added value

enables parallel developments

free feature propagation


bad

longer time to market


high investments

lots of maintenance


poor quality

poor reliability


diversity is opposed

lot of know how required


predictable too late

dependability


knowledge dilution

lack of market focus


interference

but integration required
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Succesful examples of reuse

homogeneous domain


hardware dominated


limited scope


cath lab

MRI

television

waferstepper


car

airplane

shaver

television


audio codec

compression library

streaming library


Software Reuse; Caught between strategic importance and practical feasibility
4 Gerrit Muller

version: 1.0
21st February 2008

SWRsuccessful



Limits of successful reuse

poor/slow response on paradigm shifts


TV: LCD screens

cath lab: image based acquisition control


struggle with integration/convergence with other domains


TV: digital networks and media

cath lab: US imaging, MRI


software maintenance, configurations, integration, release


MRI: integration and test

wafersteppers: number of configurations


how to innovate?
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Reuse statements

customer diversity

market  dynamics
 product diversity
 reuse shared


proven functionality


1 Reuse 
of 
software modules 
 is 
needed


2 
The 
technical
 
and


reuse

sharing


conflicting

interests


overdesign or

under performance


complicated

supplier customer


relationships


3 
organizational 
 challenge

 are 
underestimated


integrating concepts: performance, resource management, exception handling, etcetera


4 Components
  are the 
easy 
part, 
integration 
 is 
difficult
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Reuse statements continued

5 Reuse 
of 
know how
  
or
 
people 
instead of


implementation 
 i
s more 
effective


6 
The 
p
latform 
must 
evolve 
continuously


7 Focus 
on 
business bottomline 
 and 
customer

not on
 reuse


8. Use 
before 
reuse


dynamic 
market

changing 
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based
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rapid changing
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(Moore!)

using


specification


design
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validation


verification


people


know how
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1. Reuse is needed

Software Reuse; Caught between strategic importance and practical feasibility
8 Gerrit Muller

version: 1.0
21st February 2008



Reuse is needed ... as part of the solution
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2. Technical challenge
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The danger of being generic: bloating

after refactoring


specific

implementations


without a priori re-use

generic design from


scratch


lots of if-then-else


lots of configuration

options


lots of stubs


lots of best guess

defaults


over-generic class


lots of

config

over-

rides


lots of

config

over-

rides


lots of

config

over-

rides


toolbox

side


client

side


in retrospect common

(duplicated) code


"Real-life" example: redesigned 
 Tool 
super-class and descendants, ca 1994
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Exploring bloating
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Bloating causes more bloating
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causes even more bloating...

overhead


value


legenda


core

functionality


genericity

configurability

provisions for


future


support for

unused legacy

code


po
or

 d
es

ig
n 

("
ho

w
")




do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e 
fin

e 
gr

ai
n 

C
O

M
 in

te
rfa

ce
s


po
or

 s
pe

ci
fic

at
io

n 
("

w
ha

t")



core

functionality


genericity

configurability

provisions for


future


support for

unused legacy

code


po
or

 d
es

ig
n 

("
ho

w
")




do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e 
fin

e 
gr

ai
n 

C
O

M
 in

te
rfa

ce
s


po
or

 s
pe

ci
fic

at
io

n 
("

w
ha

t")



core

functionality


genericity

configurability

provisions for


future


support for

unused legacy

code


po
or

 d
es

ig
n 

("
ho

w
")




do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e 
fin

e 
gr

ai
n 

C
O

M
 in

te
rfa

ce
s


po
or

 s
pe

ci
fic

at
io

n 
("

w
ha

t")



core

functionality


genericity

configurability

provisions for


future


support for

unused legacy

code


po
or

 d
es

ig
n 

("
ho

w
")




do
gm

at
ic

 ru
le

s

fo

r i
ns

ta
nc

e 
fin

e 
gr

ai
n 

C
O

M
 in

te
rfa

ce
s


po
or

 s
pe

ci
fic

at
io

n 
("

w
ha

t")



decomposition overhead

poor


design

poor

spec


dogmatic

rules
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genericity 
configurability provisions for


performance, resource

optimization


poor

design


poor

spec


dogmatic

rules


support for unused legacy code


genericity 
configurability provisions for


Bloating causes performance

and resource problems.


Solution: special measures:

memory pools, shortcuts, ...
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3. Organizational challenge
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Conventional operational organization

portfolio


operational

manager


family


operational

manager


project

leader


(single product)


project

leader


(subsystem)


 developers


portfolio

architect


family

architect


product

architect


subsystem

architect


marketing

manager


family


marketing

manager


product

manager


entire

portfolio


product

family


single

product


subsystem


module


operational
 technical
 commercial
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Modified operational organization

portfolio
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manager
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technical
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component

manager


platform


component
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Reuse causes coupling

product

creation


family

creation


product

creation


platform

creation


policies

priorities


deliverables


budgets

constraints


deliverables


customer


customer


conflicting

interests
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4. Integration
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Decomposition is easy, integration is difficult

Decomposition

is "easy"


Integration is

difficult
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Nasty surprises show up during integration

component 1


component 4


component 3


component 2


integration and test


scheduled

closing date


delay


Do you have any design

issues for the design meeting?


The default answer is: No.


realized

closing date


During integration numerous

problems become visible
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Architectural mismatch

tuner
 tuner
MPEG
 MPEG


Duplication


Architectural mismatch
 :

wrappers, translators, conflicting controls


Poor performance;

additional resource usage


additional 
 code

and complexity,


no 
 added 
 value


UI
 UI


non problem
Problems
 Architecture
 Reuse
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Integrating concepts

resource

usage


perfor-

mance


exception

handling


device

abstraction


pipeline


start up

shut down


persistence


IQ


tuner
 frame-

buffer
 MPEG
 DSP
 CPU
 RAM


drivers
 scheduler
 OS


etc


audio
 video
 TXT

file-


system
networking
etc.


view
 play
 browse


storage


acquisition
 compress
 encoding


display
 de-

compress


decoding

2.
 construction


decomposition


3.
 allocation


1.
 functional

decomposition


4.
 infrastructure


5.
 choice of

integrating


concepts


safety


security
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Platform block diagram

Architecture

guidelines


Base Product


Hardware Abstraction
 Infrastructure

services


Application

Toolboxes


Application

Services


Test environment


Development

support


services


Product 1

specifics
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Product n

specifics


Hardware
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Platform types
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5. Reuse of know how and people
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Reuse in CAFCR perspective

Customer

What


Customer

How


Product

What


Product

How


What 
does Customer need

 in Product and 
 Why
?


C
ustomer

objectives


A
pplication
 F
unctional
 C
onceptual
 R
ealization


rate of

change


Understanding
 spec
 design
 implemen-

tation


"easy" reuse
 costly

reuse
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6. Evolution
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The platform in a dynamic world

Architecture


Platform


Dynamic 
Market


Fast changing
 Technology


How 
stable

is a platform

or an architecture?


Components


Software Reuse; Caught between strategic importance and practical feasibility
29 Gerrit Muller

version: 1.0
21st February 2008

LWAplatformStability



Platform evolution (Easyvision 1991-1996)

1991


1992


1994


1991


1994


Last changed in:


Growth


Change


3
rd
 generation components are mature, active maintenance needed.

Growth and change continues, some "old" components become obsolete


1992


1996
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7. Focus on business bottomline and customer
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Simplified process view

policy and

planning


customer


Philips business


va
lu

e


PCP


customer oriented process

(sales, service, production)


people and technology management process
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Modified Process Decomposition

policy and

planning


customer


Philips business


va
lue




PCP


customer oriented process

(sales, service, production)


people and technology management process


create generic components
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Financial Viewpoint on Process Decomposition

policy and

planning


customer


Philips business


va
lue




PCP


customer oriented process

(sales, service, production)


people and technology management process


create generic components


management


tomorrow's cashflow


strategic asset


generation


assets


cashflow generation
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Feedback flow: loss of customer understanding!

policy and

planning


Philips business


va
lue



people and technology management process


create generic components


PCP


fe
ed

-

ba

ck



customer


customer oriented process

(sales, service, production)
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Models for reuse

lead customer


carrier product


platform


technology push


good

direct feedback


too specific?


generic?

no feedback


bad


advanced

demanding


innovate for specific customer

refactor to extract generics


innovate for specific product

refactor to extract generics


innovate in generic platform

integrate in products


innovate in research laboratory

transfer to product development
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8. Use before reuse
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Feedback

3 months

25 months


Start


Target


stepsize:

elapsed time:


Software Reuse; Caught between strategic importance and practical feasibility
38 Gerrit Muller

version: 1.0
21st February 2008
LWAfeedbackLarge



Feedback (2)

3 months

25 months


2 months

12 months


Start
 Start


Target
 Target


stepsize:

elapsed time


Software Reuse; Caught between strategic importance and practical feasibility
39 Gerrit Muller

version: 1.0
21st February 2008

LWAfeedbackMedium



Feedback (3)

3 months

25 months


2 months

12 months


1 month

8 months


Start
 Start
 Start


Target
 Target
 Target


stepsize:

elapsed time


Small feedback cycles result in Faster Time to Market
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Use = Validate before Reuse

Does it satisfy the needs?


Does it fit in the constraints?


Does it fit in the design?


Is the quality sufficient?
 multiplication of problems

or multiplication of benefits


architectural match

no bloating


cost price

effort


performance

functionality

user interface
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